联系电话:
EN
智慧能源的追求者和倡导者
Dedication to Smart Energy
智慧能源的追求者和倡导者
Dedication to Smart Energy
智慧能源的追求者和倡导者
Dedication to Smart Energy
智慧能源的追求者和倡导者
Dedication to Smart Energy
智慧能源的追求者和倡导者
Dedication to Smart Energy
智慧能源的追求者和倡导者
Dedication to Smart Energy
新闻资讯
新闻资讯
如何用 “慢思考”快OpenAI一步?

  AI又一次迎来质变的进化:9月13日,OpenAI o1-preview落地,一时间引发人们对“Inference law(推理定律)”取代“Scaling Law(规模定律)”的热议。当大家深入探讨OpenAI o1的“思维链”时,才发现,这不是与两个月前周鸿祎说的“慢思考”是一个底层逻辑吗?

  AI的发展,不仅要卷技术的领先,更要卷思维的前瞻。洞察趋势,预见到未来的方向,才能真正领跑未来。

  具有强大推理能力、适用于复杂任务的OpenAI o1,再次给业界带来震动。用OpenAI官方的说法:“这个模型在复杂推理任务上是一个重大的进步,代表了人工智能能力的一个新水平;因此,我们决定重新开始编号,把这一系列模型命名为OpenAI o1。”言外之意就是,这是AI思维模式、发展路径的一次重大改变,预示着未来AI发展的全新路径。

  过去的GPT系列模型虽精确且量大,但缺乏“思考”环节,因此难以真正理解复杂学科如物理学和数学。

  这一次的具体变化归结为“思维链” (Chain-of-Thought, CoT)一词。o1 系列模型采用全新的训练方法,不再局限于模仿训练数据中的模式,而是通过强化学习和“思维链”技术,引导模型自主处理问题,主打推理能力。工作原理本质上是-思维链的自动化,把一个复杂问题拆解成若干简单步骤,从而有利于大模型解决复杂的逻辑问题。

  OpenAI 创始人山姆·奥特曼(Sam Altman) 将 o1 称为“迄今为止最强大、最一致的一系列模型”,并将其视为迈向自主系统或代理的关键一步。

  总结起来,“思维链”有几个特性:像人一样思考,自主推理,自动分解步骤,通过一系列模型协同完成。

  有没有觉得“似曾相识”?没错,早在7月底的ISC.AI 2024大会上,360集团创始人周鸿祎就提出:“用基于智能体的框架打造慢思考系统,从而增强大模型的慢思考能力。”

  他认为,快思考的特点是快速直觉、无意识,反应很快但能力不够强。GPT类大模型通过训练大量知识,主要学习的是快思考能力,GPT这类大模型能做到脱口而出,但是质量不够稳定,甚至会“一本正经地胡说八道”,所答非所问。而慢思考则是缓慢、有意识、有逻辑性,需要分很多步骤,类似写一篇复杂的文章,要先列提纲,根据提纲去搜集数据,收集素材,根据素材进行讨论,再把文章写出来,还要进行润色和修改。也就是说,慢思考更像真正的人类一样去思考,先了解问题的意图,再对分步完成一项复杂的任务。

  周鸿祎评价:“这一次OpenAI o1拥有了人类慢思考的特质,在回答问题前会反复地思考,拆解、理解、推理,可能会自己问自己1000遍,然后才能给出最终的答案。”

  显然,“思维链”与“慢思考”是一套逻辑体系,不谋而合,只是周鸿祎无论从观点到实践,都早了近两个月。

  这也将是产业的一个转折点。GPT当年很轰动,并引发了千模大战。但是卷大模型的道路上,普遍缺乏“思考”环节,有时不能正确理解问题,有时不能解答复杂的科学问题。随着“思维链”与“慢思考”的提出,为AI的发展引入了新的底层思维逻辑,不仅在生成内容时进行计算,还模拟了“先想后说”的过程,更接近人类思维模式,标志着向通用AI(AGI)迈进的重要一步。

  正如周鸿祎所说:“所以,以后比的不是多快能给你答案,而是给的答案完不完整,人工智能到最后还是要参考人类大脑的组成来构造工作模式。”

  与过去一味地卷大模型不同,周鸿祎更关注的是如何让AI真正处理问题,真正给用户所带来价值。两个月前,周鸿祎在提出“慢思考”的全新逻辑时,也拿了出全新的解题思路----多模型协同。

  以前MoE(Mixture-of-Experts,混合专家)架构的稀疏混合专家模型都被认为是Transformer之后大模型下一个发展的新趋势。MoE模型可以只选择某一专家模型来处理数据,这使得模型在推理过程中更高效,因为大部分专家处于未激活状态,由此减少了不必要的计算,即所谓的快思考。而在7月底的ISC大会上,360推出了CoE(Collaboration-of-Experts,专家协同)技术架构,可以让多个模型分工协作、并行作战,执行多步推理,不同模型之间可以相互补充、相互校验,确保面对复杂问题能有更稳定的输出,解决“AI幻觉”的弊端。能预见,未来CoE会替代MoE成为新趋势,开启多模型协同时代。

  由360牵头,百度、腾讯、阿里巴巴、智谱AI、Minimax、月之暗面等16家国内主流大模型厂商形成一个联盟,将这一些企业的54款大模型产品接入CoE,协同发挥作用。其实,今年以来,大模型企业之间的合作、联手慢慢的变多,只是360这次的联盟声势比较大,并且将一些互联网头部企业都囊括进来,在市场上影响相对来说比较大。

  据悉,CoE技术架构不仅接入了“大模型”,还接入了很多十亿甚至更小参数的专家模型,这使得总系统更加智能。CoE架构在实现“让最强的模型回答最难的问题”的同时,还能在回答简单问题时调用更精准的“小模型”,在获得高质量回答的同时,节约推理资源、提升响应速度。

  有了技术架构,有了大模型,更重要的是要有应用,通过应用才能让大模型更好用,大模型的协同效果才能得到验证。360在加速产品的AI化的同时,在多个产品中都通过多模型协同实现产品的领先优势。

  360AI搜索就是基于CoE技术架构,支持多模型协作重构了搜索的底层链路,是一种真正意义上的“AI原生搜索引擎”。 360AI搜索“深入回答”模式,首先是构建意图分类模型,然后打造任务路由模型对问题进行拆解,最后再构建AI工作流,整一个完整的过程会涉及7-15次的大模型调用,这才能让用户获得真正高质量的回答。

  在CoE技术架构的加持下,360AI搜索仅用了八九个月的时间,就超越了Perplexity AI,蝉联全球最大的AI原生搜索引擎;并且依然势能强劲,以113%的月访问量增速,位列全球主要搜索引擎首位。

  入驻360AI浏览器的AI助手(的「多模型协作」能力,近期也成为了行业焦点。用户都能够从国内主流16家厂商的54款LLMs中任意3款,分别做专家、反思者和总结者,直观体验LLM领域的“三英战吕布”。让3款LLM协作起来,组队碾压GPT-4o、媲美OpenAI o1。

  由此可见,作为国内“AI教父”的周鸿祎,并不只是一个思考者,更是一个行动者。他在洞察到大模型的诸多问题之后,给出新的路径;并且身体力行,通过搭台子、建班子、练队伍的方式,将这个路径给验证了。这才是真正难得的地方。

  自从OpenAI掀起大模型浪潮之后,周鸿祎非常活跃,在语言上和行动上都是。一方面,他在各种场合交流对AI发展的新趋势的见解;另一方面,迅速推动公司全部的产品的AI化,两者相互促进。

  而这次,在大模型前进道路上迈出的关键一步,周鸿祎和360不仅与OpenAI不谋而合,并且还快了一步,正是其在思考中实践、在实践中思考的结果。

  如今,AI的发展还处于初级阶段。最近,“慢思考”与“思维链”理念的提出,对AI的发展带来三点启示。

  大模型火了之后,传统互联网大公司、创业者都进来卷,但卷大模型的价值有那么大吗?从终局来看,AI 不是被动接受指令的工具,而是能够自主“思考”、决策和行动的智能伙伴。

  周鸿祎在看到大模型强大的同时,也很早就看到AI幻觉的问题,并思考未来的发展趋势。战略方向比具体的战术更重要,单点的技术创新是战术,而终局思维才是战略方向,这是其“慢思考”的来源。

  跑得快很重要,但是更重要的是在对的方向上跑得快。如果一味地卷大模型,其实是对产业资源的浪费。

  今天,“慢思考”与“思维链”也不是终局,只是在向终局的路上迈进了一大步。

  技术创新与用户价值之间,往往隔着一道鸿沟,跨过这道鸿沟的企业比发明技术的企业更伟大。最早发明二维码的不是微信,但是微信是二维码最大的推动者。新能源电池不是特斯拉发明的,但特斯拉确是新能源汽车产业的先行者。

  大模型很酷,但如何能为用户创造价值更重要。也就是说,卷应用落地比卷大模型更有意义。360的产品全面AI化,目的是让小白用户都能够简单轻松地体验到AI带来的好处。在应用的落地方面,360走得很快,特别是在多模型协同上领先了OpenAI两个月。

  学习、办公是最常见的应用场景,为了推动应用了落地,360还推出了AI办公,是一个一站式学习办公工具,用户都能够体验到AI图片、AI文档、AI音视频、AI PPT等超过200多个AI能力,几乎覆盖所有学习、办公所需。

  AI的实现,是一个很复杂的系统工程,不是单个公司能够实现的。在业界有一个共识,未来AI的竞争是生态的竞争。单个OpenAI可能很强,但是通过协同作战,中国的大模型可以用全新的思路弯道超车。

  经测试,基于CoE架构集各家所长的混合大模型能力就超过了GPT-4o。该混合大模型在翻译、写作等12项指标的测试中取得了80.49分的综合成绩,超越了GPT-4o的69.22分;而且除了代码以外,其余11项指标均优于GPT-4o。尤其是在“逻辑推理”、“多步推理”、“诗词赏析”这类比较具有中文特色的问题上,CoE的一马当先的优势更加明显。

  目前,360“多模型协作”在测试中,已经打败并远远甩开GPT-4o,媲美o1-preview,这就是联盟的力量,生态的威力。

  AI发展初期,从大模型来看好像中国落后一步。如果跟在别人后面延着人家的轨迹追,差距只会越拉越远。以终局思维重新审视AI的发展路径,技术创新的同时更要路径创新。“慢思考”与“思维链”的巧合,是中国AI发展赶超的新契机。